
Journal of Biomechanics 36 (2003) 803–813

Non-driving intersegmental knee moments in cycling computed using
a model that includes three-dimensional kinematics of the shank/foot

and the effect of simplifying assumptions

Colin S. Gregersena, M.L. Hulla,b,*
aBiomedical Engineering Program, University of California, Davis, CA 95616, USA

bDepartment of Mechanical Engineering, University of California, Davis, CA 95616, USA

Accepted 19 December 2002

Abstract

Assessing the importance of non-driving intersegmental knee moments (i.e. varus/valgus and internal/external axial moments) on

over-use knee injuries in cycling requires the use of a three-dimensional (3-D) model to compute these loads. The objectives of this

study were: (1) to develop a complete, 3-D model of the lower limb to calculate the 3-D knee loads during pedaling for a sample of

the competitive cycling population, and (2) to examine the effects of simplifying assumptions on the calculations of the non-driving

knee moments. The non-driving knee moments were computed using a complete 3-D model that allowed three rotational degrees of

freedom at the knee joint, included the 3-D inertial loads of the shank/foot, and computed knee loads in a shank-fixed coordinate

system. All input data, which included the 3-D segment kinematics and the six pedal load components, were collected from the right

limb of 15 competitive cyclists while pedaling at 225W and 90 rpm. On average, the peak varus and internal axial moments of 7.8

and 1.5Nm respectively occurred during the power stroke whereas the peak valgus and external axial moments of 8.1 and 2.5Nm

respectively occurred during the recovery stroke. However, the non-driving knee moments were highly variable between subjects; the

coefficients of variability in the peak values ranged from 38.7% to 72.6%. When it was assumed that the inertial loads of the shank/

foot for motion out of the sagittal plane were zero, the root-mean-squared difference (RMSD) in the non-driving knee moments

relative to those for the complete model was 12% of the peak varus/valgus moment and 25% of the peak axial moment. When it was

also assumed that the knee joint was revolute with the flexion/extension axis perpendicular to the sagittal plane, the RMSD

increased to 24% of the peak varus/valgus moment and 204% of the peak axial moment. Thus, the 3-D orientation of the shank

segment has a major affect on the computation of the non-driving knee moments, while the inertial contributions to these loads for

motions out of the sagittal plane are less important.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Over-use injury in cycling is commonly manifest at the
knee joint where, over time, knee joint structures
become damaged from low-level repetitive loading
(Holmes et al., 1991). Determining the force and
moment components transmitted by the knee during
cycling is useful to understand the etiology of over-use
injury and also to assess the effectiveness of different
interventions to protect against over-use injury. Because
the loads thought to be primarily responsible for over-

use knee injury are the non-driving moments (varus/
valgus and internal/external axial moments) transmitted
by the knee (Francis, 1986), a three-dimensional (3-D)
model is necessary for calculating these loads.

To our knowledge, calculations of the non-driving
knee moments have been limited to two studies.
Performed by Ericson et al. (1984), the first study
developed a frontal plane model where the varus/valgus
knee moment was calculated using only the normal and
medial/lateral pedal forces. While serving as the first
step in calculating the varus/valgus knee moment, this
model neglected the abduction/adduction and inversion/
eversion pedal moment contributions to the varus/
valgus knee moment, which are not insignificant (Davis
and Hull, 1981). Performed by Ruby et al. (1992a), the
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second study combined results from two, 2-D knee
models to calculate the 3-D knee loads. This study
demonstrated the importance of measuring all six load
components at the pedal and their cumulative effects on
non-driving knee loads.

In demonstrating the contribution of all pedal load
components to knee loads, Ruby et al. assumed that
inertial contributions to the knee loads resulting from
motion out of the sagittal plane were negligible and that
the knee joint was revolute. Because relaxing these
assumptions may affect computed knee loads to some
degree, it would be advantageous to use a 3-D model
that includes complete 3-D kinematics of the shank to
examine the effects of these assumptions on the non-
driving moment calculations. Therefore, there were two
objectives of this study. The first objective was to
develop a complete 3-D model of the lower limb to
calculate the 3-D knee loads during pedaling for a
sample of the competitive cycling population. The
second objective was to examine the effects of simplify-
ing assumptions on the calculations of the non-driving
knee moments.

2. Methods

2.1. Analytic model

An inverse dynamics approach was utilized to
calculate the 3-D knee loads during pedaling. The lower
limb segments were modeled as rigid bodies intercon-
nected by spherical joints. The intersegmental loads
were calculated at the center of these joints. For each
segment, the distal forces, distal moments, kinetics, and
kinematics were used to determine the unknown
proximal loads. The proximal loads were calculated
from

Fp ¼ msa
s� � Fd � Fg; ð1Þ

Mp ¼ ’H
s=s�

� Md � ðrp=s� � FpÞ � ðrd=s� � FdÞ; ð2Þ

where Fp; Fg; and Fd are the respective proximal,
gravitational, and distal force vectors, ms is the segment
mass, as� is the acceleration vector of the segment center
of mass (denoted by s�), Mp and Md are the respective
proximal and distal moment vectors about the center of
mass, rp=s� and rd=s� are the position vectors to the
respective proximal and distal joint centers from the
segment center of mass, and ’H

s=s�
is the time derivative

of the angular momentum vector of the segment about
its center of mass (expressed in the segment-fixed
principal basis) (Fig. 1). With the principal directions
and principal moments of inertia (Ix�x�; Iy�y�; Iz�z�)
known, the components of the angular momentum
vector ’H

s=s�
were determined as

’H
s=s�

x� ¼ Ix�x� ’ox� � ðIy�y� � Iz�z�Þoy�oz�;

’H
s=s�

y� ¼ Iy�y� ’oy� � ðIz�z� � Ix�x�Þoz�ox�;

’H
s=s�

z� ¼ Iz�z� ’oz� � ðIx�x� � Iy�y�Þox�oy�;

ð3Þ

where ox�; oy�; and oz� are the scalar components of the
angular velocity vector of the segment expressed in the
principal basis ðx�; y�; z�Þ; and ’ox�; ’oy�; and ’oz� are the
scalar components of the time derivative of the angular
velocity vector expressed in the principal basis. Using
the external pedal load vectors as Md and Fd for the foot
segment, the proximal intersegmental ankle load vectors
were calculated. The reaction vectors were then used as
Md and Fd for the shank segment to calculate the
proximal intersegmental knee load vectors. All kinetic
and kinematic model inputs in Eqs. (1) and (2) were
measured directly from each subject.

2.2. Model inputs

The distal force and moment vectors (Fd and Md;
respectively) applied to the foot were measured with a
six-load component pedal dynamometer (Model PD-
001, Shimano Industrial Corporation, Osaka, Japan).
This dynamometer had maximum root-mean-squared
error (RMSE) values of 7.1, 1.7, and 2.6N for the
respective x, y, and z pedal force components, and 0.16,
0.04, and 0.34Nm for the respective x, y, and z

moments (Ruby and Hull, 1993). All external forces
and moments were calculated at the pedal reference
point (origin of the pedal local coordinate system)
defined as the intersection between the symmetry axis of
the clipless pedal contact surface and a line perpendi-
cular from this surface to the pedal spindle axis.

The remaining kinematic and kinetic quantities
necessary to solve for the intersegmental knee loads
using Eqs. (1) and (2) were determined in three steps.
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Fig. 1. Generic three-dimensional body segment containing distal (d)

joint center, proximal (p) joint center, and center of mass (s*) points.

See text for definitions of vectors.
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The first step was to determine the position vectors to
the joint centers from the origin of an intermediate,
marker-based local coordinate system, expressed in the
intermediate basis. Reflective markers were mounted on
the subject’s heel, toe, lateral malleolus, medial mal-
leolus, tibial tuberosity, lateral epicondyle, and medial
epicondyle. In addition, three reflective markers were
mounted on the pedal body (Fig. 2). The heel marker
was mounted over the cycling shoe to represent the
posterior-most point on the heel. Similarly, the toe
marker was mounted to represent the tip of the longest
toe (first or second).

Following marker placement, a static calibration trial
was recorded for 1 s using a video-based motion capture
system (Motion Analysis Inc., Santa Rosa, CA). During
this trial, the subject rested the right foot on the pedal
with the ankle and knee joints at approximately 90� of
flexion. The static calibration trial was necessary to
determine the position vectors to the ankle joint center
(AJC) and knee joint center (KJC) from intermediate
local coordinate system origins expressed in the inter-
mediate local basis, which were used for the subsequent
pedaling trials to track the AJC and KJC.

Using the three pedal markers, a local pedal
coordinate system (Fig. 2) was established and the
transformation matrix between the laboratory and pedal
bases was determined. The position vector to the pedal
reference point from the local pedal origin was measured
directly and expressed in the local pedal basis. The
position vector to the pedal reference point from the
laboratory origin was determined.

Intermediate local coordinate systems were estab-
lished on both the foot and shank using a virtual marker
in conjunction with two segment-fixed markers (Ra-
makrishnan et al., 1987). The intermediate local

coordinate system on the foot was established using
the virtual reference point on the pedal in conjunction
with the heel (origin) and toe markers. The AJC was
assumed to lie midway along a line connecting the
medial and lateral malleoli markers. The position vector
to the AJC from the local origin was determined and
expressed in the intermediate foot basis. A position
vector to the AJC from the laboratory origin, expressed
in the laboratory basis, was also calculated. The
coordinates of this vector were used as a virtual marker
for the AJC.

Similarly an intermediate, local coordinate system
was established on the shank using the virtual AJC in
conjunction with the lateral malleolus (origin) and tibial
tuberosity markers. The KJC was assumed to lie
midway along a line connecting the epicondyle markers.
The position vector to the KJC from the local origin was
determined and expressed in the intermediate segment
basis. A position vector to the KJC from the laboratory
origin, expressed in the laboratory basis, was also
calculated. The coordinates of this vector were used as
a virtual marker for the KJC. Defining the two position
vectors to the joint centers from the intermediate local
coordinate system origins was necessary because the
medial malleolus and medial epicondyle markers
would not clear the bicycle frame during the pedaling
trials and had to be removed following the static
calibration.

The second step in determining the kinematic and
kinetic inputs was to determine the position vectors to
the joint centers from the laboratory coordinate system
origin in the pedaling trials, express them in the
laboratory basis, and develop the principal bases. For
the foot segment, this position vector to the AJC from
the laboratory origin was determined for all foot

Fig. 2. (A) Illustration of pedal dynamometer reflective markers and local pedal coordinate system. The origin of the local pedal coordinate system

coincides with the pedal reference point. (B) Illustration of lower limb reflective markers and virtual joint centers for the ankle and knee joints. The

knee joint center served as the origin of the local shank coordinate system in which the knee load components were computed.
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positions during the pedaling trials as described above.
The foot principal coordinate system was established
using the AJC, heel, and toe markers and the
transformation between the laboratory coordinate
system and the principal coordinate system was deter-
mined. For the foot principal coordinate system, the
anterior/posterior x-axis was the line connecting the heel
and toe markers (anterior positive), the proximal/distal
z-axis was perpendicular to the anterior/posterior axis
passing through the AJC (proximal direction positive),
and the medial/lateral y-axis was mutually perpendicu-
lar to these axes. Note that these directions
correspond to the respective longitudinal, frontal,
and sagittal directions described by Zatsiorsky et al.
(1990) and used by de Leva (1996) in determining
mass and moment of inertia parameters. The position
vector to the foot center of mass (origin of the
principal basis) from the laboratory origin was calcu-
lated based on the position vector to the heel from the
laboratory origin and a percentage along the line
connecting both the heel and toe markers (de Leva,
1996).

The shank principal coordinate system was deter-
mined similarly where the position vectors to the AJC,
KJC, and tibial tuberosity from the laboratory origin
were used. Again, the directions of the principal axes
were based on de Leva (1996) where the proximal/distal
z-axis connected the joint centers (proximal positive),
the anterior/posterior x-axis was perpendicular to this
axis passing through the tibial tuberosity (anterior
positive), and the medial/lateral y-axis was mutually
perpendicular to these two axes. These directions
correspond to the respective longitudinal, sagittal, and
transverse directions (de Leva, 1996). The position
vector to the shank center of mass was calculated based
on the position vector to the KJC from the laboratory
origin and a percentage along a line connecting the AJC
and KJC virtual markers.

The third and final step involved calculating the
necessary kinematic and kinetic inputs in Eqs. (1) and
(2) to solve for the intersegmental load vectors. For the
foot, as� was determined by taking the second time
derivative of the position vector to the foot center of
mass from the laboratory origin using finite difference
methods. The mass of the foot was estimated (de Leva,
1996). Eq. (1) was then solved for the ankle joint
intersegmental force vector, expressed in the foot
principal basis. The position vectors to the pedal
reference point and to the AJC from the foot center of
mass (rd=s� and rp=s�) were then determined and were
expressed in the foot principal basis. The cross products
of these vectors with the respective pedal force vector
(Fd) and intersegmental ankle force vector (Fp) were then
calculated. The kinematic inputs for Eq. (3) were then
determined where the angular velocity vector
of the segment in the laboratory basis (NxS) was

calculated from

NxS ¼
Ndðj�Þ
dt

�k�
� �

i�

þ
Ndðk�Þ
dt

�i�
� �

j � þ
Ndði�Þ
dt

�j�
� �

k�; ð4Þ

where i�; j�; and k� are the unit vectors of the principal
basis. Given a generic transformation matrix to the
laboratory basis N from the principal basis P such as

½T �N=P ¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
64

3
75; ð5Þ

the x�; y�; and z� components of the angular velocity
vector of a given segment relative to the laboratory
reference frame and expressed in the principal basis
become
NoS

x� ¼ ’a12a13 þ ’a22a23 þ ’a32a33;
NoS

y� ¼ ’a13a11 þ ’a23a21 þ ’a33a31;
NoS

z� ¼ ’a11a12 þ ’a21a22 þ ’a31a32; ð6Þ

and the angular acceleration components are the time
derivatives of these components. The principal inertia
tensor for the foot segment was estimated (de Leva,
1996), after which Eq. (2) was solved for the ankle joint
intersegmental moment vector, expressed in the princi-
pal basis. For the shank, the same procedure was
followed to calculate the kinematic and kinetic inputs to
solve for the knee intersegmental force and moment
vectors, expressed in the shank principal basis.

Knee loads were expressed in a shank-fixed coordi-
nate system (Fig. 2) where the axes reflected the
functional axes of the knee joint (Hollister et al., 1993)
while remaining necessarily orthogonal. The z0-axis was
the line that connected the knee joint center to the ankle
joint center. The x0 and y0 axes were located in a plane
perpendicular to the z0-axis, where the y0-axis was the
projection of the knee flexion/extension axis onto this
plane (medial direction positive). The x0-axis was
mutually perpendicular to the two (anterior direction
positive). These axes represented the internal/external
axial (z0), flexion/extension (y0), and varus/valgus (x0)
axes of the knee joint. This coordinate system was
defined in the static calibration trial, where the
transformation matrix to this coordinate system from
the principal coordinate system was calculated as a
simple rotation about the principal proximal/distal axis.
Intersegmental knee loads were expressed as loads
applied to the tibia that must be equilibrated by
structures crossing the knee (i.e. muscles, ligaments,
and bones). This convention is interpreted as tendencies
for relative motion of the tibia with respect to the femur.
Hence, a positive My0 would act to flex the knee joint
(applied flexion moment), a positive Mx0 would cause
the tibia to adduct relative to the femur (applied varus
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moment), and a positive Mz0 would cause the tibia to
rotate internally relative to the femur (applied internal
axial moment).

2.3. Simplified models

Two other models were developed to examine how
simplifying assumptions affect the calculation of the 3-D
knee loads. One of these two models, termed the
simplified spherical joint model, was identical to the
complete spherical joint model described above except
that the mass and moments of inertia of the foot, the
moments of inertia of the shank about the x* and z*
principal axes, and the medial/lateral accelerations of
the shank were all zero. The second of these two models,
termed the revolute joint model, was the same as the
simplified spherical joint model, except that the knee
joint was assumed revolute with the axis of revolution y0

coincident with the laboratory y-axis (medial/lateral
direction) (Ruby et al., 1992a). The z0-axis was
perpendicular to the y0-axis and passed through the
ankle and knee joint centers, and the x0-axis was
mutually perpendicular to both.

2.4. Experiment

Fifteen competitive cyclists, none of whom had a
history of over-use knee injury in cycling, volunteered to
participate in the study. The average age of the subjects
was 2874 years (mean71 S.D.), range 18–30 years;
average height was 1.8270.06m, range 1.73–1.91m;
and average mass was 77.778.3 kg, range 65.8–95.3 kg.
The subjects pedaled a conventional racing bicycle
mounted on an electronically braked Velodyne erg-
ometer (Frontline Technology, Inc., Irvine, CA) that
allowed a constant workrate to be set independent of
pedaling rate. The subjects adjusted the bicycle to match
their own bicycle’s geometry. The subjects all used zero-
float clipless pedals and were allowed to choose their
own cleat angle. Data were collected from the right leg.

Three markers attached to the bicycle were used to
establish a frame-fixed coordinate system in order to
track the position of a virtual marker located at the
point connecting the crank arm to the crank spindle.
Another virtual marker was also developed to track the
point connecting the pedal spindle to the crank. These
markers allowed the crank angle to be computed. Crank
angle was defined as zero when the crank was vertical
and upward (top-dead-center position). The virtual
crank center marker position was calculated using a
static calibration trial, identical to the static calibration
trial for the subject, where a reflective marker was
attached to the crank center point. The virtual pedal
spindle marker position was measured directly in the
pedal-fixed basis.

The reflective marker position-time data were col-
lected and processed utilizing a motion capture system
(Motion Analysis Inc., Santa Rosa, CA). Four high-
speed video cameras were placed in an umbrella
arrangement such that the 3-D marker positions were
recorded. The dynamometer output was synchronized,
and collected by the motion capture system. The camera
sampling frequency was 120Hz, while the sampling of
the dynamometer outputs was 1200Hz. The 12-bit A/D
board contained in the motion analysis system digitized
the analog inputs. The strain gage amplifier (Measure-
ments Group, Raleigh, NC) gains for the dynamometer
were set to yield maximum resolution of the digitized
signal, yet eliminate any possible signal saturation. Prior
to testing, the motion capture system and bicycle
ergometer were calibrated and the pedal dynamometer
offset values were recorded. All the reflective markers
outlined above were attached to the subject and bicycle.
For all subjects, the markers remained in place for the
duration of the study. Following marker placement, the
static calibration trial was performed to determine joint
center locations. Pedal dynamometer and marker path
data were filtered using a second-order, zero phase shift
low-pass Butterworth filter with a cutoff frequency of
6Hz (Winter, 1990). The testing protocol consisted of a
15-min warm-up period at a workrate of 100W and
cadence of 90 rpm. Following the warm-up period,
experimental data were recorded while the subject
pedaled at a workrate of 225W and 90 rpm for 5min
in a 52� 19 gear. Four, 5 s trials were recorded during
this period, yielding approximately 30 cycles of data.

The x0, y0, and z0 load components of the interseg-
mental force and moment vectors at the knee were
computed as a function of crank angle. The load
components for all complete pedal revolutions for each
subject were linearly interpolated in 5� increments of the
crank angle (effective reduction of sampling frequency
to 96Hz) and an average load component–angle curve
was generated for all of the subjects. For the calcula-
tions of knee loads using the complete spherical joint
model, the maximum number of complete pedal cycles
(22–30) obtained during the recording session was used
to compute the average load component–angle curve for
each subject.

Comparisons between the two simplified models
(simplified spherical joint and revolute joint) and the
complete spherical model were performed only for the
non-driving knee moment components (Mx0 and Mz0).
Six complete pedaling cycles were used for each of the
three models to compute the average load–angle curves
for each subject. For each of the two simplified models,
the root-mean-square difference (RMSD) from the
complete spherical model was determined for each
subject and for each of the two non-driving moment
components. Both the Mx0 and Mz0 RMSD values were
normalized for each subject by dividing them by the
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respective peak varus moment and peak internal axial
moment from the complete spherical joint model.

3. Results

The power stroke, defined as the region of the crank
cycle when the applied knee flexion/extension moment is
positive (i.e. tending to cause knee flexion), began at a
crank angle of 306� and ended at a crank angle of 119�

on average (Fig. 3). During the power stroke, the
applied varus/valgus moment (Mx0) began valgus on
average and became varus with a peak value of +6Nm
at 70�, then decreased to 0Nm at the end of the power
stroke. During the recovery stroke, defined as the region
where the applied knee flexion/extension moment is
negative, Mx0 became valgus with a peak value of –7Nm
at an angle of 250�. During the power stroke, the
applied internal/external axial moment (Mz0) was inter-
nal on average and peaked at +1Nm at 25�. The peak
external axial moment of –2Nm occurred near the start
of the recovery stroke.

The variability between subjects was quite large for
both non-driving moments (Table 1). The peak applied
varus moment ranged from –1.5Nm (maximum Mx0

value) to +19.6Nm. The peak applied valgus moment
ranged from –3.4 to –13.5Nm. The coefficients of
variability (CV) were 72.6% and 38.7% for the peak
varus and valgus moments, respectively. Mz0 displayed
similar variability between subjects where the peak
internal axial moment ranged from 0.3 to 3.3Nm (CV
of 59.9%) and the peak external axial moment ranged
from 0.7Nm (minimum Mz0 value) to –5.3Nm (CV of
59.6%).

The crank angle locations of the peaks were similarly
variable (Table 1). Although the peak varus moment
occurred during the power stroke at a crank angle of
approximately 70� (710�) for the majority of the
subjects (9 of 15), there were significant deviations from

the average (CV of 67.5%). In contrast the crank angle
corresponding to the peak valgus moment occurred
during the recovery stroke and was more consistent (CV
of 30.4%). Similarly, average crank angles for the peak
internal axial moment (27.3�) occurred during the power
stroke and were highly variable (CV of 157%) while the
average crank angles for the peak external axial moment
(174�) occurred during the recovery stroke and were
more consistent (CV of 41.6%).

Neglecting inertial contributions by the foot and
shank out of the sagittal plane (i.e. simplified spherical
joint model) led to differences in the non-driving
moments from those of the complete spherical model
primarily in the recovery stroke (Fig. 4). On average,
during the power stroke, both the varus/valgus and
internal/external axial moment patterns were similar
between the two models after which the patterns began
to diverge. The largest difference in peak values was in
the peak valgus moment. The average RMSD for the 15
subjects was 2.0Nm for the varus/valgus moment,
which was 11.9% of the peak varus moment determined
by the complete spherical model (Table 2). For the axial
moment curves, the average RMSD was 0.2Nm, which
was 25.1% of the peak internal axial moment deter-
mined by the complete spherical model.

Adding the assumption of the revolute knee joint to
the simplified spherical model (i.e. revolute joint model)
led to results that were more different from those of the
complete spherical model than the differences between
the simplified spherical and complete spherical joint
models (Fig. 4). On average, the varus/valgus moment
curves from the revolute and complete spherical joint
models typically exhibited similar patterns, but with
large differences in peak values. The revolute joint
model overestimated (in an absolute sense) both the
peak varus and valgus moments by nearly 3Nm. The
average RMSD between the varus/valgus curves of these
two models for the 15 subjects was 4.1Nm, which was
23.9% of the peak varus moment determined using the
complete spherical joint model (Table 2). These absolute
and relative differences between the revolute and the
complete spherical joint models were approximately
twice the differences between the simplified spherical
and complete spherical joint models.

The axial moments from the revolute joint model
exhibited differences in both patterns and peak values
from those of the complete spherical joint model. The
revolute joint model overestimated the peak internal
axial moment by nearly 1Nm where the crank angle of
the peak occurred 145� later in the crank cycle (Fig. 4).
The peak external axial moment was comparable
between the models but occurred 40� earlier in the
crank cycle for the revolute joint model. The average
RMSD was 2.0Nm, which was 204% of the peak
internal axial moment from the complete spherical joint
model (Table 2). These absolute and relative differences
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between the revolute and the complete spherical joint
models were approximately ten times the differences
between the simplified spherical and complete spherical
joint models.

4. Discussion

Because over-use knee injuries are common in cycling,
because non-driving intersegmental knee moment com-
ponents are thought to be primarily responsible for the
etiology of these injuries, and because no previous study
known to the authors has determined these moment
components with a complete 3-D model of the leg, one
purpose of this study was to develop such a model and
then use it to compute the moment components of
interest. Another purpose was to justify the need for a
complete 3-D model by comparing the results from this
model to those from two simplified models. The key
findings of this study were that on average a varus and
internal axial moment must be resisted by musculoske-
letal structures in the power stroke of the crank cycle
while a valgus and external axial moment must be
resisted in the recovery stroke; however, the variability
between subjects was high. Also simplifying assump-
tions cause large differences in non-driving moments
particularly when the knee joint kinematic model is
considered to be revolute with the rotational axis
perpendicular to the sagittal plane. Before discussing
the importance of these findings several methodological
issues should be reviewed critically to assess their
potential to influence the findings of the study.

4.1. Methodological issues

Because of our interest in understanding the etiology
of over-use injury and also in assessing the effectiveness

Table 1

Peak values of varus/valgus (þMx0=� Mx0 ) and internal/external axial ðþMz0=� Mz0 Þ moments and corresponding crank angles for all subjects used

in this study

Subject Peak +Mx0

(Nm)

Peak �Mx0

(Nm)

Peak +Mx0

angle (deg)

Peak �Mx0

angle (deg)

Peak þMz0

(Nm)

Peak –Mz0

(Nm)

Peak þMz0

angle (deg)

Peak –Mz0

angle (deg)

1 17.0 �9.4 75 195 1.0 �5.3 55 150

2 3.0 �6.2 70 260 1.2 �1.8 0 105

3 0.5 �8.8 310 230 0.4 �2.8 330 205

4 8.2 �6.4 75 255 1.7 �1.1 50 230

5 11.4 �5.9 55 225 2.1 �2.8 30 115

6 7.1 �7.6 85 260 0.9 �3.4 355 120

7 11.9 �12.5 25 215 3.3 �2.5 0 135

8 6.2 �8.4 155 270 0.3 �3.5 340 115

9 3.8 �11.7 70 255 1.8 0.7a 125 305

10 9.3 �4.4 70 195 1.9 �0.9 40 215

11 4.7 �8.7 40 235 1.3 �3.8 25 135

12 �1.5b �10.9 60 235 2.2 �2.8 40 210

13 10.1 �3.4 70 260 3.1 �1.6 50 120

14 19.6 �13.5 75 180 0.6 �1.7 80 330

15 6.3 �3.8 130 0 0.9 �4.1 330 115

Average 7.8 �8.1 67.0 218.0 1.5 �2.5 27.3c 173.7

S.D. 5.7 3.1 45.2 66.3 0.9 1.5 42.9 72.3

C.V.(%) 72.6 38.7 67.5 30.4 59.9 59.6 157.0 41.6

aMinimum value for subject 9.
bMaximum value for subject 12.
cFor values greater than 300, the average was computed after 360 was subtracted.
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of different interventions to protect against over-use
injury, a desirable goal of this study was to express knee
loads in functionally meaningful directions (i.e. flexion/
extension, varus/valgus, and internal/external axial).
However, achieving this goal is difficult because the
functional directions at the knee are neither orthogonal
nor fixed to the femur or tibia (Grood and Suntay, 1983;
Hollister et al., 1993). The functional flexion/extension
axis is fixed to the femur, the internal/external rotation
axis is fixed to the tibia, and the varus/valgus is a
floating axis mutually perpendicular to the others. This
presents a problem when expressing knee loads because
the coordinate system needs to be fixed to one segment
and should be orthogonal (Andrews, 1984). The
coordinate system presented expresses knee loads in
approximate functional directions, while satisfying these
constraints. Defining a flexion/extension axis by project-
ing the flexion/extension axis onto a plane perpendicular
to the long axis of the shank is reasonable considering
that the angle of intersection between these two axes is
nearly 90� (Hollister et al., 1993). While other coordi-
nate systems exist for expressing knee loads (Cappozzo
et al., 1995; Pennock and Clark, 1990; Ramakrishnan
et al., 1987), our coordinate system expresses the loads
in functionally and clinically meaningful directions.

One source of error that had the potential to affect the
moment calculations was associated with the motion
capture system. The error inherent to the motion
capture system used in this study has been estimated
on the order of 1–2mm for both static and dynamic tests

(Richards, 1999). Because these errors are composed of
random, high frequency components which manifest as
random noise (Cappozzo, 1991), the low-pass digital
filtering operation as well as averaging of the data over
multiple crank cycles reduced errors of this type.

Despite the fact the filtering operations reduced
random errors, it is still possible that random noise
introduced errors into the inertial loads computed with
the complete spherical model. While it is difficult to
quantitatively estimate errors in inertial loads due to
random noise because this source of variation cannot be
decoupled from natural physiological variation in
generating the movement, evidence demonstrates that
these errors were not substantial. All components of the
linear and angular acceleration vectors demonstrated a
repeatable pattern over time both within and across
subjects. This pattern would not have been evident if the
random errors were substantial in relation to these
vector components.

A second source of error was movement of skin-
mounted markers relative to underlying bone, which
affects calculations of both segment kinematics and joint
center positions. Marker movement has been shown to
affect segment kinematics, where the magnitude of the
error is location and task specific (Cappozzo et al., 1996;
Fuller et al., 1997; Holden et al., 1997; Manal et al.,
2000; Reinschmidt et al., 1997a; Reinschmidt et al.,
1997b). A common result from these studies was that
shank markers typically exhibit lower movement errors
than thigh markers (Cappozzo et al., 1996; Reinschmidt

Table 2

Comparison of non-driving knee moments from the revolute joint (RJ), simplified spherical (SS), and complete spherical (CS) joint models. Root-

mean-square difference (RMSD) values in Nm and RMSD as a percentage of peak positive moment for both varus/valgus and internal/external axial

moments are given

Varus/Valgus Internal/External Axial

RMSD (Nm) RMSD (% of peak+Mx0 ) RMSD (Nm) RMSD (% of peak+Mgx0 )

Subject CS–SS CS–RJ CS–SS CS–RJ CS–SS CS–RJ CS–SS CS–RJ

1 3.0 3.3 17.9 19.3 0.2 2.3 16.3 229.7

2 2.3 5.2 13.8 30.7 0.2 1.6 21.9 163.5

3 1.7 6.0 10.2 35.2 0.3 2.9 29.5 295.7

4 2.9 6.0 17.2 35.2 0.2 1.5 24.3 147.7

5 2.4 1.7 14.2 9.9 0.2 2.7 24.4 272.6

6 2.2 4.3 13.1 25.2 0.2 2.4 21.0 247.2

7 1.4 3.1 8.3 18.2 0.2 1.8 15.8 179.1

8 3.3 6.1 19.1 36.1 0.4 3.1 45.1 311.3

9 2.0 3.9 11.7 22.9 0.1 1.0 14.3 96.7

10 1.9 2.2 11.1 13.2 0.3 0.9 25.5 88.7

11 1.2 4.7 7.3 27.9 0.2 3.3 19.1 332.5

12 1.6 4.3 9.1 25.4 0.3 3.4 29.1 346.1

13 1.9 1.8 11.1 10.3 0.3 0.8 33.7 76.3

14 0.9 3.0 5.3 17.7 0.2 0.5 21.3 48.6

15 1.7 5.4 10.0 31.8 0.3 2.2 34.8 218.3

Average 2.0 4.1 11.9 23.9 0.2 2.0 25.1 203.6

S.D. 0.7 1.5 4.0 8.9 0.1 1.0 8.3 98.1
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et al., 1997a). In addition, the effects of marker
movement error on knee joint moments have been
computed for walking where the shapes of the moment
curves were largely unaffected but the averages were
shifted, indicating systematic errors (Holden et al., 1997;
Holden and Stanhope, 1998). Based on these observa-
tions and considering that the present study utilized only
two skin-mounted shank markers (lateral malleolus and
tibial tuberosity), marker movement was not an
important source of error. Additionally, because the
errors are expected to be systematic, conclusions can be
drawn more confidently when relative changes are of
interest, as was the case for the second objective of this
study (Table 2). Likewise in assessing the effectiveness of
methods for preventing over-use injury, this should not
be an important source of error because changes in knee
loads are the focus.

A final source of error was the placement of the
markers for the static calibration trial. The static
calibration procedure performed here established a
quasi-functional tibia-fixed coordinate system based on
the placement of the epicondyle and malleoli markers.
These markers defined both the flexion/extension axis of
the knee and the long axis of the tibia. Because the
accuracy of the placement of these markers can affect
the moments computed in the tibia-fixed reference frame
(Ramakrishnan and Kadaba, 1991) and hence the
repeatability of results between test days, it was of
interest to estimate the error introduced into the non-
driving moments from errors in marker placement.

To estimate these errors in the varus–valgus moment
which is subject to the greater error, a Monte Carlo
simulation was performed in which the x0-coordinate of
each marker was varied according to a normal distribu-
tion with a zero mean and standard deviation (S.D.) of
1.9mm. With this S.D., 99% of the distribution is
contained within75mm which is the worst case error in
the placement of an individual marker. From this
simulation, the corresponding RMSE in the angle of
both the x0- and y0-axis about the z0-axis was 1.2�. For a
condylar width of 13 cm (average obtained from the
static calibration trials of subjects) and a peak flexive
moment of 45Nm (average obtained from the subjects),
the RMSE introduced into the varus–valgus moment
was 0.94Nm or 12% of the peak varus moment.
Because the RMSE was 6 times smaller than the S.D. of
the peak varus moment for the subjects, the variation
between subjects evident in Table 1 was not strongly
influenced by artifacts due to errors in marker place-
ment. A similar conclusion holds for the axial moment
because the RMSE due to errors in marker placement
are much less than the RMSE for the varus/valgus
moment.

Moreover, previous studies specifically aimed at
examining repeatability in 3-D analysis of intersegmen-
tal loads also found that knee joint moments were

repeatable between test days. Both Kadaba et al. (1989)
and Growney et al. (1997) performed extensive investi-
gations into the within-day and between-day repeat-
ability of knee moments during walking. Both studies
determined that the intersegmental knee moments were
sufficiently repeatable between days to draw meaningful
conclusions about kinetic measures such as knee
moments from one data collection session.

4.2. Importance/interpretation of results

The first key result of this study was the large
variability between subjects, indicating that the average
non-driving moment curve does not represent the non-
driving moment curve for an individual well, as
indicated by the peak and peak angle quantities. While
it is likely that some of the variability could be due to the
error sources noted above, this result is consistent with
observations of knee loads during both cycling (Boyd
et al., 1997; Ruby et al., 1992a; Ruby et al., 1992b) and
walking (Andriacchi and Strickland, 1985; Li et al.,
1993; Ramakrishnan et al., 1987). This result is
important in developing a technology to prevent over-
use injury because subject-to-subject variability may
complicate assessing how an intervention affects the
inter-segmental knee loads. Consequently, the effect of
any intervention should be examined on a subject-by-
subject basis.

The causes for the high inter-subject variability
observed in cycling have been attributed to subject-
specific anatomy and equipment set-up (Holmes et al.,
1994; Ruby et al., 1992b). Approximately 60% of the
variability in the non-driving knee moments can be
attributed to specific lower limb anatomical measures
(Ruby et al., 1992b). Equipment set-up parameters such
as saddle height, saddle position, bicycle frame geome-
try, shoe type and shape, and cleat positioning are also
potential sources of variability. The variability that was
observed in this study is likely due to both of these
factors, because the riding position was not standardized
and the subject anatomy was not screened.

The result that non-driving knee moments were
substantial during pedaling could be important in
understanding the etiology of over-use cycling injuries
(Ruby et al., 1992a). The combined loads that are
developed (i.e. flexor/extensor with varus/valgus and
internal/external axial moments) must be supported by
structures crossing the knee. If knee joint musculature is
responsible for supporting these combined loads, then
over-use injuries could develop. Chondromalacia patel-
lae, which is a common over-use injury in cyclists
(Holmes et al., 1991), is one example. The vastus
lateralis has a moment arm about the varus/valgus axis
of the knee along with its primary moment arm about
the flexion/extension axis (Buchanan et al., 1996; Lloyd
and Buchanan, 1996). The development of a large varus
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knee moment during the power stroke could cause an
increase in the force output of the vastus lateralis to
equilibrate this load. This preferential force production
could in turn cause a muscular imbalance in the
quadriceps, affecting patellar tracking and increasing
patellar contact pressures, leading to patello-femoral
pain (Wolchok et al., 1998).

Used to generate the simplified spherical model, the
assumption that the medial/lateral component of accel-
eration and moments of inertia about the x� and z�
principal axes for the foot and shank were zero resulted
in reasonably good predictions of both the timing and
peak values of the non-driving knee moments (Fig. 4,
Table 2). The divergence during the recovery stroke
occurred because the relative contributions of the
inertial loads increased relative to the contributions
from the pedal forces, which decreased considerably in
this region of the crank cycle. These results indicate that,
while introducing differences into the computations of
the non-driving knee moments, the assumptions of the
simplified spherical model introduce less differences in
non-driving moments in the power stroke than in the
recovery stroke.

The pronounced differences between the complete
spherical joint model and the revolute joint model
(Fig. 4, Table 2) occurred because of the combined
effects of the assumption noted above for the simplified
spherical model in conjunction with the additional
assumption that the flexion/extension axis y0 remains
coincident with the laboratory y-axis which was
perpendicular to the sagittal plane. For the varus/valgus
moment each assumption contributed equally to the
RMSD (Table 2) but for the axial moment, the second
assumption contributed about ten times more to the
RMSD than the first assumption. Because the second
assumption contributed so much more to the RMSD
than the first assumption for the axial moment, it can be
concluded that the major difference between the
complete spherical joint model and the revolute joint
model is due to the difference in the orientation of the
two local tibial coordinate systems. As noted earlier, the
non-driving moments are sensitive to the coordinate
system in which they are expressed because the flexion/
extension moment is much larger than the non-driving
moments.

This point can be illustrated further by examining the
difference in the axial moment due to the difference in
orientation of the y0–z0 axes for the spherical joint model
relative to the revolute joint model. Averaging over the
subjects, the mean difference in orientation was 2.7� and
ranged from 5.3� valgus to �0.5� varus during one
crank cycle. For a peak flexive moment of 45Nm, a 2.7�

rotation of the y02z0 axes results in a 2.1Nm difference
in the axial moment computed using the revolute joint
model. As explained in the Methodological Issues
subsection, the axial moments for the complete spherical

model were repeatable with substantially less error than
0.9Nm which was the error computed for the varus–
valgus moment. Accordingly, the revolute joint model
introduced differences into the axial moment that far
exceeded the errors in the axial moment determined
using the complete spherical model.

Because the different coordinate systems yield differ-
ences in the load components that are substantial
enough to affect the interpretation of over-use injury
mechanisms particularly in the case of internal/external
axial moments (Fig. 4), one question that remains is
which is the more appropriate coordinate system. The
answer to this question depends on the purpose of the
model. If understanding the etiology of over-use knee
injury is the purpose, then it would be advantageous to
compute the knee load components in a subject-specific
coordinate system that provides clinically meaningful
loading variables. In ignoring axial rotation, which is a
degree of freedom inherent to the knee joint (Hollister
et al., 1993), the revolute joint model necessitates a
coordinate system that is not truly fixed to the shank
and hence is not subject specific. In allowing three
degrees of rotational freedom, the spherical knee model
enables a coordinate system that reflects subject-specific
3-D rotations of the shank including axial rotation.
Hence this coordinate system should provide a more
meaningful representation of the loads that must be
born by the structures crossing the knee that are
susceptible to over-use injury.
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